If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18y^2-18y-5=51
We move all terms to the left:
18y^2-18y-5-(51)=0
We add all the numbers together, and all the variables
18y^2-18y-56=0
a = 18; b = -18; c = -56;
Δ = b2-4ac
Δ = -182-4·18·(-56)
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-66}{2*18}=\frac{-48}{36} =-1+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+66}{2*18}=\frac{84}{36} =2+1/3 $
| x-16/3=5 | | 4(3x+4)-2x=8x-20 | | 8y^2-73y=90 | | -4*(8.333333333+2y)-7*y+3*(8.333333333+2*y-2*y+11)=27 | | 3u-34=u | | -5a-6a=-59 | | -4(8.333333333+2y)-7y+3(8.333333333+2y-2y+11)=27 | | 2x=3(5x-7)=47 | | 30x^2-99x-18=45 | | 15^2x15^2=15 | | 30x^2-99x-18=0 | | 3p-6=3 | | -13w+-4w-(-15w)-3w=-20 | | 20u=u+38 | | y=1/3+5 | | 30k^2-11k-30=0 | | 18x-5(2x+13)+3(9-8x)=6x-7(x-16) | | 6(x+6)+4=52 | | 4x+10=34-2x | | x/9+12=14 | | 10k^2+38k-8=0 | | -8d=-48 | | 12r^2+75r+108=0 | | (6*2n)/8=15 | | F(x)=50(0.7)* | | -2=-5x-2 | | -2=-5x+2 | | 18b^2-21b+5=0 | | 79=4x-1 | | (x-8)(7+8)=0 | | w2+19w+90=0 | | -18y+9y-5y+8y-(-20)=14 |